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MIUIC: A Human-Computer Collaborative Multimodal Intention-Understanding
Algorithm Incorporating Comfort Analysis

Liran Zhou, Zhiquan Feng, Hongyue Wang, and Qingbei Guo

School of Information Science and Engineering, University of Jinan, Jinan, China

ABSTRACT
The naturalness and safety of human-computer interaction have always been primary research
focuses in the field of human-computer interaction. This paper proposes a multimodal intention
understanding algorithm (MIUIC), which incorporates comfort analysis, as a solution to address the
issues of low intention understanding rate, weak interaction, and weak collaboration that are often
observed in most massage systems. The algorithm efficiently fuses multimodal data based on
objective implicit information to address the challenge of low intention understanding rates
caused by non-standard expression of natural behavior. Moreover, this algorithm incorporates
comfort reasoning to detect and address intentions related to security threats while providing the
ability for robots to make behavioral decisions through inverse active interaction, leading to more
equitable human-robot interactions. To test the validity and safety of the MIUIC algorithm, we
embedded the algorithm into a mechanical arm massage system. Subsequently, 45 elderly volun-
teers were invited to participate in experimental tests. Finally, to verify the validity and safety of
the MIUIC algorithm, we assessed the algorithm in terms of four aspects, including multimodal
intention recognition rate, the ability to reduce data dispersion, the intention enhancement rate
under reverse human-machine interaction, and the rate of avoiding dangerous intentions. In con-
clusion, the MIUIC algorithm enhances the intention understanding rate and promotes.
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1. Introduction

The continuing growth of the global aging population has
become one of the major social issues, increasing the
demand for smart health services (Carros et al., 2020).
Besides, the Coronavirus-19 (COVID-19) pandemic has
changed the normal living style of people (Haleem et al.,
2020), leading to an increase in mental health problems,
including depression, anxiety, self-harm and suicide
(Holmes et al., 2020; Jim�enez-Pav�on et al., 2020). Massage is
an ancient Chinese medical practice (Naruse & Moss, 2019;
Wei et al., 2017), which has been proven to have various
positive effects on mental and physical health and well-being
(Naruse et al., 2020; Zhang et al., 2015). The physical effects
of massage include pain relief and the psychological effects
include stress, anxiety and fatigue reduction (Kozak et al.,
2013; Y€ucel et al., 2020). However, for manual massage
tasks, it requires a lot of labor cost, which prompts the
research on artificial intelligence technology (Li et al., 2020;
Si et al., 2019). Artificial intelligence has gradually become a
new driver of global value chains (Awan et al., 2022; Awan
et al., 2022), avoiding repetitive operations and increasing
task execution rates through technological innovation and
resource allocation optimisation. Therefore, the relaxed mas-
sage robot based on artificial intelligence has become a
research hotspot.

Currently, there are two common types of intelligent
massage systems available in the market: the roller massage
chair and the humanoid massage robotic arm. The roller
massage chair is deemed safe with limited interactivity,
whereas the humanoid massage robotic arm offers high
flexibility but typically requires assistance from personnel or
auxiliary technologies, hindering the possibility of attaining
the application objectives in domestic settings (Field, 2019).
To ensure safe interaction in enabling the massage robotic
arm to perform relaxation massage tasks autonomously has
become paramount. In addition to hardware safety protec-
tion measures such as softness design of materials
(Hirzinger et al., 2001), emergency button control, and
strength control (Mewes & Mauser, 2003), intention infer-
ence based on behavior perception and data is also one of
the important steps to guarantee safety (Zacharaki et al.,
2020).Therefore, if a human-computer collaborative robot
can accurately infer the intention conveyed by human
behavior, it will greatly improve the safety of human-com-
puter interaction, and operational efficiency, thus increasing
the user’s sense of safety (Kleinman et al., 1970).Peterson
et al. proposed that people’s decisions are based on multi-
modal inputs (Peterson et al., 2021). However, currently,
most human-computer collaborative systems predominantly
depend on speech or gestures to perceive inputs. deviates
from the aim of natural interaction and can be challenging
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for older adults with declining expressive abilities (Lang
et al., 2023). The ambiguity in input data poses a challenge
for systems to comprehend users’ intentions. Furthermore,
collaborative systems based on multimodal data currently
lack sufficient integration of the data and do not fully apply
the principle of equal interaction, rendering the practical
application of the system challenging. Studies have demon-
strated that intention recognition methods that utilize multi-
modal fusion can address the issue of ambiguous or missing
input information, thus effectively reducing uncertainty in
intention recognition (Ernst & Banks, 2002). Additionally,
safe intention comprehension and collaboration can be
achieved through repeated interaction (Hajarian et al.,
2019).

This paper proposes a multi-modal intention understand-
ing algorithm that integrates comfort analysis based on the
principle of equal interaction, to address the issues of low
intention understanding rate and weak collaboration in cur-
rent massage systems. The algorithm comprises a multi-
modal intention understanding algorithm and a safety
human-computer collaboration strategy. The multi-modal
intention understanding algorithm undertakes modal correc-
tion by exploring the implicit information in multi-modal
data and resolves the problem of low intention understand-
ing caused by input ambiguity via effective data integration.
The strategy of secure human-computer collaboration
employs comfort analysis and reverse-active interaction to
address issues related to weak system collaboration and deci-
sion-making authority. This strategy also enhances the rate
of intention understanding.

The algorithm made three main contributions: (1) con-
structing a safe interaction framework that prioritizes nat-
ural interaction, (2) proposing an improved evidence
theory-based multi-modal intention recognition algorithm to
fully exploit the objective information hidden in multi-
modal data, and (3) introducing a safety collaboration strat-
egy based on comfort detection, which empowers robots to
make behavior decisions, thereby increasing intention recog-
nition rates and achieving safety collaboration to a certain
extent.

This paper is organized as follows: The second section
introduces the research on human-computer interaction and
multimodal intention perception. The third section introdu-
ces the principle and implementation of the proposed algo-
rithm in this paper. The fourth section describes the
experimental testing and evaluation based on the effect of
the algorithm in this paper. In the fifth section, a discussion
and analysis are carried out and future research directions
are described. Finally, the sixth section is the conclusion.

2. Related work

It is known that intention perception and human-computer
collaboration are the main parts that make up algorithms
when studying human-computer interaction algorithms.
This section predominantly examines and discusses current
formats of human-computer collaboration, together with

methods for intention recognition and multimodal data
fusion.

2.1. Human-Computer interaction and Human-Computer
collaboration

Human-computer collaboration is a subfield of human-com-
puter interaction research (Y. Wang & Zhang, 2017) that
has gained significant attention recently and is now being
widely applied across a range of research areas, including
manufacturing (Papanastasiou et al., 2019) and healthcare
(Pineau et al., 2003). The primary focus of human-computer
collaboration is the cooperative sharing of space and task
delegation between humans and robots, emphasizing intui-
tive and predictable interactions (Callens et al., 2020). This
field encompasses both theoretical and practical research, as
well as design and evaluation, that is related to human-com-
puter interactions (Czarnowski et al., 2018; Herath et al.,
2018). To enhance collaboration between humans and com-
puters, a multitude of communication modes has been
extensively researched, as evidenced by multiple studies
(Berg et al., 2019; Kim et al., 2019). These communication
modalities primarily involve gestures (Gadekallu et al.,
2022), speech (Dinh Le et al., 2019), eye movements (Trick
et al., 2019), body postures (Dutta & Zielinska, 2019), and
physiological signals EMG (Peternel et al., 2016) and EEG
(Tan et al., 2021). The various communication modalities
available have significantly improved robots’ ability to com-
prehend environmental states and user information more
accurately and comprehensively.

Currently, the majority of human-computer collaborative
systems adopt the master-servant interaction mode whereby
the human provides specific instructions and the robot com-
plies with the instructions accordingly. This model has the
potential issue of “blind obedience,” which can deteriorate
the quality and effectiveness of human-computer interaction
(Skantze, 2017). The research goal of human-computer col-
laboration is to achieve safe coexistence and natural inter-
action. This requires robots to have a minimum level of
autonomy and be capable of exhibiting initiative (Gervasi
et al., 2020).

Some researchers have begun exploring ways to enable
active interaction, such as Sun et al. who proposed a hybrid
technique that integrates passive and active haptics to
develop a haptic feedback model that can be used for AR
assembly tasks (Sun et al., 2019). The model enhances the
user’s haptic perception of the virtual object through active
vibrotactile feedback when they touch the object, in addition
to passive haptics that convey the object’s stiffness in the
virtual scene. Zheng et al. (Zheng et al., 2018) asserted that
conventional animal-like robots lack the ability to interact
with humans in a basic touch-based way and proposed a
new type of socially assistive robot, which is active and
equipped with whole-body haptic sensing. The robot
responds with appropriate feedback when stimulated by
touch and prompts the user to touch specific areas in a par-
ticular order during the next interaction. Flesher et al.
(Flesher et al., 2021) embedded their developed brain-
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computer interface-controlled prosthetic system into a para-
lyzed. The system incorporates afferent information from
muscles, skin, and joints for bidirectional interaction. The
system facilitated the patient’s ability to generate tactile sen-
sations by microstimulating the cortex, which effectively
supplemented visual information and resulted in significant
progress in the experimental outcomes. The experimental
results in the aforementioned studies demonstrate that active
interaction promotes positive human-computer interaction
and improves user experience. Nevertheless, most robots’
active feedback content relies heavily on human instruction,
and their behavioral decision-making ability is relatively
weak. In contrast, Kelley et al. (Kelley et al., 2012) utilized
contextual information about the form of object revelation
and object state to enhance the performance of a potential
intention recognition system. Robots equipped with this sys-
tem actively gather the user’s state information, using it for
contextual reference and to prompt if further help is needed.
This study led to the development of equal interaction and
serves as an inspiration for this paper’s call for safe and
intelligent human-computer collaboration.

In summary, current human-computer collaborative sys-
tems suffer from deficient collaboration, lack of system ini-
tiative, and ineffective multimodal intention understanding
methods. This paper presents a method for intention safety
analysis based on user comfort detection for human-com-
puter collaboration in a home-based massage robot. The
method enables the robot to take initiative to reverse the
analysis of dangerous intentions and actively prompts the
user for additional information. The proposed method
emphasizes the goal of achieving equal interaction between
humans and robots, enhancing the naturalness and fluency
of interaction, and ensuring user safety.

2.2. Multimodal data fusion and intention recognition

The capability of machines to comprehend human intention
empowers them to recognize human emotions, thereby
enhancing goal achievement. The fundamental technique for
recognizing intention entails selecting the appropriate output
category from several categories through input information
in a robotic system. This technique uses two primary imple-
mentation methods, namely traditional statistical recognition
and neural network recognition.

Several statistical learning methods, including Bayesian
(Khalvati et al., 2019), Random Forest (Sridhar et al., 2017),
and Hidden Markov (Chang et al., 2021), can be utilized to
address the intention recognition issue. Mi et al. (Mi et al.,
2021) employed Bayesian probability to reconstruct an indis-
tinct feature presentation of the target and efficaciously
tackled the problem of understanding intention with incom-
plete data. Nonetheless, while Bayesian algorithms are suit-
able for smaller samples, they are prone to misclassification
when the number of intentions rises. Chen et al. (L. Chen
et al., 2020) classified high-dimensional emotional character-
istics into distinct subclasses and employed multiple
Random Forests to recognize varied emotional states in
speech. Nonetheless, Random Forests are computationally

expensive and time-consuming during training and exhibit
poor recognition outcomes in the presence of noisier inputs.
Chen et al. (Z. Chen et al., 2022) proposed an intention rec-
ognizer based on the Hidden Markov Model (HMM) for an
autonomous driving system to capture the intention of other
vehicles attempting to change lanes. The intention recog-
nizer simulates the selective attention mechanism of the
human visual system by incorporating the speed change of
surrounding vehicles as a lane change cue to enhance its
recognition performance. However, frequent HMM itera-
tions can escalate the time consumed for recognition, and
the strict adherence to Markov’s assumption may decrease
the algorithm’s certainty when intention changes occur less
frequently, leading to a lack of additional observation that
provides greater accuracy (Ferguson et al., 2015). Although
statistical probability-based models for intention recognition
earlier mentioned have high interpretability, the requirement
for initial probability choices can be susceptible to error and
subjectivity.

With the advancement of technology, machine learning
has demonstrated its superiority in processing multimodal
data, such as speech and vision, and thereby offering new
solutions for intention classification. Various artificial intelli-
gence techniques, such as convolutional neural networks
(CNNs) (Sugano et al., 2016) and recurrent neural networks
(RNNs) (Singh et al., 2017), are increasingly applied in
intention classification research. Multimodal data fusion,
based on how the data is combined, can be categorized into
two types: feature layer fusion and decision layer fusion.

Feature layer fusion is a type of multimodal data fusion
that combines the pertinent features from each modality by
mapping it into a high-dimensional feature vector using
transformation algorithms, thereby increasing the accuracy
of intention classification. An example of this is the
improved single-shot multi-box detector (SSD algorithm)
proposed by Bai et al. (Bai et al., 2022). In their study, they
performed deep feature fusion between the target detection
layer and its adjacent feature layers, resulting in improved
object detection accuracy. Wang et al. (M. Wang et al.,
2020) developed a bio-inspired data fusion architecture to
recognize human gestures, integrating visual and somatosen-
sory data. Their approach achieved better results than using
either modality alone. The proposed model utilizes convolu-
tional neural networks for visual processing and sparse
neural networks for sensor data and visual data fusion to
achieve robust recognition of a visual question-and-answer
system for medical images (Sharma et al., 2021). In their
study, they used ResNet-152 for image feature extraction,
BERT for question feature extraction, and Multimodal
Factorized Bilinear Pooling (MFB) to complete multimodal
feature fusion. Additionally, they employed an attention-
based multimodal deep learning model called MedFuseNet,
which outperformed several state-of-the-art models.

Previous studies demonstrated the advantages of multi-
modal feature layer fusion. However, feature layer fusion
may struggle to explain causality at the cognitive level.
Additionally, adjusting network parameters becomes time-
consuming and labor-intensive when the number of
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intentions changes. Therefore, many researchers focus on
using multimodal fusion on the decision layer. This ensures
differences between different attributes are highlighted,
which allows researchers to use empirical and objective
information for making adjustments (Jiang et al., 2020).

Ortega J et al. (Ortega et al., 2019) proposed a novel
Deep Neural Network (DNN) that accurately predicts by
learning and combining the representations of multiple
modalities. The network encodes each modality independ-
ently using fully connected layers and then merges them
into one fully connected layer with multimodal fusion com-
pleted in an end-to-end manner, achieving a high level of
multimodal coordination. Dawar et al. (Dawar et al., 2019)
implemented the use of a Convolutional Neural Network
(CNN) to process visual input and a Long-Short Term
Memory (LSTM) to process sensor input. The two output
layers of these networks are multiplied by rank scores to
achieve multimodal fusion results. While this approach
resulted in promising fusion results, analysis of the differen-
ces and conflicts among modalities was neglected. Therefore,
there is still room for improvement in the implementation
of multimodal fusion.

After separately recognizing the audio, visual HD, and
depth camera inputs, Rodomagoulakis et al.
(Rodomagoulakis et al., 2016) utilized a decision layer
weighted combination to recognize human actions by com-
bining the scores obtained from each modality. Al-Amin
et al. (2019) proposed a novel method of weighted fusion
that utilizes five independent CNN models to recognize
human activities through the analysis of behavioral charac-
teristics and modal information. This approach enabled the
connection between modal information and behavioral char-
acteristics to be established, resulting in enhanced accuracy
in human activity recognition. Yang et al. (Yang et al., 2019)
proposed an integrated probabilistic inference approach that
leverages spatial-semantic and spatial-temporal analysis to
extract correlated features. They further used information
entropy to fuse the results and enable the robot to infer the
person’s role and target in a task. The approach’s efficacy
lays in highlighting each modality’s effects on the target in

the fusion process; however, subjective weight settings in the
decision-level fusion process present limitations. Analyzing
the correlations and influences of modalities comprehen-
sively can result in valuable and objective information that
enhances the overall effectiveness beyond individual modal-
ities, achieving the “1þ 1> 2” effect (L. Zhang et al., 2018).
Hence, it is suggested that during the fusion of modalities,
objective data-reflected information should be taken into
account. Objective information that is inherent in the data
must be given due consideration during the modal fusion
process to achieve greater objectivity.

In summary, multimodal fusion plays a pivotal role
across various fields. However, most intention recognition
methods overlook the objective information within the data
during the fusion process. Currently, no feasible solutions
exist for scenarios that involve ambiguous input or high
safety requirements. Hence, this research presents a multi-
modal intention recognition algorithm that utilizes feature
layer fusion, in conjunction with existing research methods
and improved evidence theory. The integration of objective
information mining, human-computer collaboration, and
active interaction principles result in the proposed algorithm
being highly adept at recognizing intention and avoiding
hazardous situations. Additionally, the presented ideas of
multimodal fusion and collaborative intention safety detec-
tion are crucial for home-based service robots. Overall, the
algorithm contributes to the interpretability and robustness
of algorithmic research in related fields.

3. Method

The proposed multimodal intention understanding algo-
rithm adopts a four-part framework, as illustrated in
Figure 1.

The framework consists of four components: information
perception, intention recognition, intention executability
analysis, and human-computer collaboration. The informa-
tion perception component acquires and processes input
data from each modality. The intention recognition compo-
nent fuses the multimodal data to accurately extract

Figure 1. The Flowchart of the Overall Framework.
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intention. The intention executability analysis component
determines intention safety through user state detection. The
human-computer collaboration component analyzes unmet
intention by actively questioning and utilizing other inter-
active behaviors for providing information feedback. Among
these four components, the intention recognition and inten-
tion executability analysis are the key elements. The follow-
ing section explains the implementation details of each
component.

3.1. Information perception and processing

This section assesses and analyzes the input information of
different modalities using diverse techniques to derive an
intention extraction rate for each modality. The purpose of
this section is to furnish data support for multimodal fusion
in intention recognition. In the experiment, the system con-
tinuously senses user voice input data, denoted as V, and
visual input, including hand gesture data Ges and body ges-
ture change data Pos: Baidu speech recognition technology
and stuttering word division are utilized for the recognition
of speech information, and the resulting intention probabil-
ity set of speech modality, denoted as IVoice, can be obtained.
Body gesture information is recognized using Kinect bone
point detection technology. This enables the determination
of the intention probability set of the body posture modality,
denoted as IPos: Gesture information is recognized using a
gesture recognition system based on CNN network classifi-
cation (Ferguson et al., 2015), enabling the determination of
the intention probability set of the gesture modality, denoted
as IGes:

Additionally, when a user initiates an interaction, the sys-
tem real-time monitors their heart rate (HR), massage inten-
sity (P), and massage duration (T) in a fixed position. The
interactive devices of this massage system mainly consist of
an Xarm robotic arm, Kinect visual perception device, voice
input device, pressure sensing sensor, and a computing and
processing device.

3.2. Multimodal intention recognition

Accurately identifying the implicit intention behind human
behavior is fundamental to the collaboration between
humans and machines, constituting the ultimate goal of
their interaction. Given the differences in human back-
grounds and cultural levels, input ambiguity is inescapable
in natural interactions between humans and robots.
Consequently, fully capitalizing on the advantages of multi-
modality and utilizing the objective information concealed
in multimodal data to diminish ambiguity is critical for suc-
cessful intention recognition. This paper proposes, based on
this concept, a multimodal fusion method that adopts an
enhanced evidence theory. The Dempster-Shafer (D-S) evi-
dence theory has the ability to accommodate uncertain
information, thus has extensive applications in information
fusion, multi-criteria decision-making, and other disciplines.
Nevertheless, when evidence is highly conflicting, the infor-
mation fusion outcomes derived from the D-S evidence

theory will encounter a paradox, impairing its practical
application. Currently, the primary approaches to addressing
this issue are enhancing combination rules and correcting
evidence sources. This study focuses on adopting an evi-
dence fusion method that employs an objective correction
coefficient, with evidence source correction as the starting
point. In general, if a modality is supported to a greater
extent by other modalities, it is reasonable to believe that
the information conveyed by that modality is more credible.
Consequently, in the fusion process, modalities with high
support can have their weight increased to enhance their
impact on the fusion outcome. Likewise, if a modality gener-
ates conflicting data, its weight should be reduced to miti-
gate its influence. Based on this reasoning, a novel
correction coefficient is established by comprehensively
assessing modalities’ self-credibility, their inter-modality
credibility, and the degree of falsehood. This involves dis-
counting the basic belief assignment function in order to
minimize evidence conflict. Ultimately, evidence fusion and
intention extraction are implemented via the Dempster com-
bination rule, thus enhancing the implementation process of
the evidence theory.

The information perception section generates a distribu-
tion of the intention probability set, which is then combined
to create the evidence set, Inp: The number of effective
modalities in Inp is denoted by n:

The reliability of modal information is indicated by the
degree of dispersion in the intention probability set.
When probability aggregates, it suggests acceptable infor-
mation conveyed by the modalities. Therefore, the
entropy value of the intention probability set partially
captures objective implicit information. This paper calcu-
lates the trustworthiness of each modality by computing
the average entropy value of n intention probability sets,
which serves as the basis for the calculation. After nor-
malization, the outcome denotes the modality’s trust-
worthiness, Credself ðInpÞ, as shown in Equation (1). Here,
Inp represents the intention probability distribution of a
specific modality.

Credself Inpið Þ ¼
Pnum

j InpiðIntjÞlog2InpiðIntjÞPn
i

Pnum
j InpiðIntjÞlog2InpiðIntjÞ

� � (1)

Here, InpiðIntjÞ is the probability of extracting the jth
intention conveyed by the ith effective modality. num repre-
sents the number of intentions in the intention set, which is
taken as 6 in this system. And n represents the number of
effective modalities in the current intention recognition
process.

The study aims to calculate the confidence of modalities
since the data from multiple modalities originates from the
same user intention. It is imperative that a connection exists
between these sets of data. Consequently, modality trend
probabilities are calculated through cosine similarity meas-
urements. The similarity between modality data sets serves
as the measurement of modality confidence, denoted by
Credbet as shown in Equation (2). In this formula, Inpi and
Inpj represent the probability distribution of user intention
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for the i-th and j-th modalities, and SimðÞ measures cosine
similarity.

Credbet Inpið Þ ¼

Pnum
j ¼ 1;
j 6¼ i

SimðInpi, InpjÞ

n� 1
(2)

The modality similarity confidence CredbetðInpÞ can only
reflect similarities between modality pairs. As such, it is inef-
fective for measuring the impact of a single modality in the
global context of all modalities. To address this limitation,
this study proposes using modality influence as a weight fac-
tor for global conflict. The calculation method for global
conflict Con0 is adopted from evidence theory and is shown
in Equation (3).

Con0 ¼
X
\I¼;

Yn
k¼1

InpkðIÞ (3)

Here, I represents the intention set while Inpk represents
the corresponding set of intention probabilities for modality k:

When excluding the ith modal information, the new glo-
bal conflict value Coni can be obtained. This value repre-
sents the effect of the ith modal information on the global
conflict, as shown in Equation (4).

Coni ¼
X
\I¼;

Yn
k ¼ 1;
k 6¼ i

InpkðIÞ (4)

Therefore, based on Equations (3) and (4), the value of
spuriousness of the ith modal, F Inpið Þ, can be calculated, as
shown in Equation (5), which can be subsequently used as a
component of the correction factor.

F Inpið Þ ¼ Con0 � Coni
1� Coni

(5)

As per the definition, if F Inpið Þ ¼ 0, it indicates that the
ith modal information has no effect on the overall conflict.
If F Inpið Þ ¼ 1, it indicates that the ith modal information is
in complete conflict with other modalities, and needs to be
reduced when intending to fuse. If 0 < F Inpið Þ < 1, it indi-
cates that the ith modal information contributes to the over-
all conflict, and the more significant the contribution, the
greater the degree of spuriousness.

The analysis above shows that the value of self-credibility
for a single modal information, the similarity between modal
information, and the global falsity of modal information do
not affect each other. They are all objective information
implied by the modal information. In this paper, correction
factors @ for each modal information can be obtained by
combining these three factors and through normalization, as
shown in Equation (6).

@ Inpið Þ ¼ Credself Inpið Þ þ Credbet Inpið Þ þ 1� F Inpið ÞPn
i¼1Credself Inpið Þ þ Credbet Inpið Þ þ 1� F Inpið Þ

(6)

Finally, the system employs the correction factor @ to
adjust the set of probabilities for the intended actions of
each modal information, in order to obtain the intention
probability set weighted average InpAve:

InpAve ¼
Xn
i¼1
@ðInpiÞInpi (7)

Applying Dempster’s rule with an InpAve combination
n� 1 times leads to a final set of intention probabilities,
IFin, after fusion. Once the data fusion phase completes,
the system proceeds to the intention extraction phase to
extract the intention element with the highest probability
in IFin as the user’s intention. To make the recognition
process more accurate, a minimum probability threshold,
th, is manually set in this paper. If the intention probability
in IFinðIntÞ is greater than th, it confirms the user’s
intended action and verifies its executability. Otherwise,
the system enters the information enhancement phase,
where Bayesian posterior probability inverse analysis is
applied to identify the intention modality with the lowest
contribution, RepInp: The user is then prompted to use that
modality to re-express the intention before re-performing
intention fusion.

In conclusion, this paper’s proposed method leverages the
objective information present in the data to make logical
corrections to multimodal information and extract valuable
data during the fusion process, leading to a noticeable
improvement in intention recognition accuracy.
Furthermore, the system incorporates reverse analysis and
active interaction to adjust and strengthen unfulfilled inten-
tions. It has the ability to “think” and “judge” to a certain
extent.

3.3. Intention execution analysis

This module aims to detect the outcomes of intention rec-
ognition (Int) and ensure user safety by recognizing and
avoiding hazardous situations. Assessing user comfort is
an essential part of contact-based human-computer inter-
action (HCI) tasks, but assigning a precise value to the
abstract concept of “comfort” is challenging. Therefore,
this paper utilizes fuzzy logic to tackle this challenge. The
system utilizes historical information and perceptual data
(Int) to evaluate user comfort and determine the feasibil-
ity of a task scientifically, which serves as a foundation
for decision-making to ensure safe human-computer
interaction.

To start, this paper categorizes intentions in the inten-
tion set into two groups: Cintensity for regulating intensity
and Cposition for regulating position. If Int 2 Cintensity, the
system employs both massage intensity (P) and the user’s
heart rate (HR) as evaluation indices to gauge user com-
fort. If Int 2 Cposition, the system uses heart rate and a
fixed position massage duration as evaluation indices. The
paper uses a blend of Gaussian and rectangular
Membership Functions to evaluate assessment indices and
considers historical factors while fuzzifying the three
assessment criteria.

The evaluation index for “massage intensity,” denoted as
P, has a theoretical range of [0, Pmax]. Here, Pmax signifies
the maximum massage intensity that has been set manually.
Historical information associated with the index reveals that
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it can be classified into five different fuzzy linguistic values:
very small, small, medium, large, and larger. Corresponding
fuzzy sets for these linguistic values are defined as VSP, SP,
MP, CLP and LP, respectively.

The evaluation index for “duration of massage in the
same position,” denoted as T, has a theoretical range of [0,
Tmax]. Here, Tmax denotes the maximum massage time that
has been set manually. Historical information associated
with the index reveals that it can be classified into five dif-
ferent fuzzy linguistic values: very short, short, medium, lon-
ger, and long. Corresponding fuzzy sets for these linguistic
values are defined as VST , ST , MT , LLT and LT ,
respectively.

The evaluation index, HR, measures the user’s heart-rate,
and theoretically, it has a domain of (HRmin, HRmax), where
HRmin is the artificially set minimum heart-rate limit and
HRmax is the artificially set maximum heart-rate limit. The
index has been partitioned into three fuzzy linguistic values
of low, medium and high, and their corresponding fuzzy
sets are SHR, MHR, and FHR:

The output linguistic variable of the system is the com-
fort level, Comf , and its theoretical domain is 0, 1

� �
: The

fuzzy subsets are very low VLC, low LC, medium MC, high
HC and very high VHC:

The setting conditions for fuzzy rules are as follows:
IF P is Pi AND HR is HRi THEN Comf is Ci;

IF T is Ti AND HR is HRi THEN Comf is Ci: The num-
ber of fuzzy rules is obtained by the Cartesian product of
fuzzy linguistic values for all input indicators. Therefore, the
number of fuzzy rules for both types of intention reasoning
systems is 15, as show Table 1.

For convenience in computation, this paper chooses the
“maximum-minimum” composite rule to complete the cal-
culation of the fuzzy entailment relationship. Let the fuzzy
output of the comfort degree in the original state (before
the execution intention Int) obtained by the system infer-
ence be denoted as l0Comf�o, and then use Equation (8) to
perform defuzzification to obtain the precise output value of
the comfort degree, lComf�o:

lComf�o ¼
P

xi � l0Comf�o½i�P
l0Comf�o½i�

(8)

Here, xi represents the center value of the membership
degree function of the ith linguistic value in the output
fuzzy linguistic set. Similarly, the exact numerical value of
user comfort in the new state (after the execution of inten-
tion Int) can be obtained as lComf :

The impact of intention Int on user comfort can be used
as one of the criteria for judging the degree of execution,
EInt, which is calculated according to Equation (9) and
ranges from (th �1, 2).

EInt ¼ ðlComf � lComf�oÞ þ IFinðIntÞ þ S (9)

The safety factor, S, has only two values, 0 and �1. If
Int 2 Cpower and the massage intensity of the new state
exceeds the limit, S is set to �1; otherwise, S is set to 0.
Similarly, if Int 2 Cposition and the massage location of the
new state is in a sensitive area, S is set to �1; otherwise, S
is set to 0. These criteria ensure that the massage device
operates within safe limits and avoids potential harm to
the user.

The following paragraph describes the security assess-
ment process for intention Int: It first considers whether
the execution threshold EInt is greater than the: If it is,
intention Int can be executed independently, but if it is
not, the intention is deemed dangerous and passes through
the collaborative module. The procedure then employs
Bayesian posterior probability reverse analysis to determine
the maximum negative impact factor. If the factor is found
to be ðlComf � lComf�oÞ, the system will actively interrogate
the user about the intention. If it is S, the system will
reject the execution of intention Int: The minimum execut-
able threshold is set artificially as the: The procedure for
processing unqualified intention in human-computer col-
laboration is as follows: use Bayesian posterior probability
reverse analysis to determine the modal RepInp that contrib-
utes the least to the intention Int and require the user to
re-express the intention actively. Doing so promotes infor-
mation enhancement.

The intention executable degree detection module is
capable of detecting potentially harmful intentions and
thereby improving the safety of the interaction process.
This module works in conjunction with the collaborative
mode of reverse analysis and active interaction, which
imbues the robot with the ability to “think and judge” to
some extent and enhances the overall fluency of the inter-
action process.

3.4. MIUIC algorithm

The MIUIC algorithm consists of three primary steps: (1)
determining and analyzing the effective input modality of
the user and corresponding intention probability set; (2) uti-
lizing objective information conveyed by multimodality,
including unimodal information entropy, inter-modal simi-
larity, and modal falsity, to correct and fuse multimodal
data for comprehensive intention extraction; and (3) execut-
ing an analysis of the extracted intention based on user
comfort. The algorithm is presented below, building upon
the aforementioned discussion.

Table 1. Fuzzy inference rule base.

Input/Output
No. P HR Comf

1 VSP SHR MC
2 VSP MHR VLC
3 VSP LHR VLC
4 SP SHR HC
..
. ..

. ..
. ..

.

Input/Output
No.

T HR Comf

1 VST SHR MC
2 VST MHR MC
3 VST LHR VLC
4 ST SHR HC
..
. ..

. ..
. ..

.
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Algorithm: A Human-Computer Collaborative Multimodal
Intention Understanding Algorithm (MIUIC) Incorporating
Comfort Analysis

Input: The intensity of massage P；massage duration T；user’s heart rate
HR；user’s voice V; user’s posture Pos; user’s gesture Ges:

Output: Safe intention FinalInt that can be finally enforced

Step1. Information perception
and processing:

Determining the overall set of probabilities of
intention Inp f V ! IVoice ;
Pos! IPos; Ges! IGes g;

Step2. Intention fusion
and intention recognition:

IF length(Inp)¼¼1:

FinalInt ¼ Int¼ maxðInpð:ÞÞ, return FinalInt；

Else:

Modal self-confidence: Credself Inpð Þ  
formula (1);
Modal Mutual Confidence: CredconðInpÞ  
formula (3);

Modal falsity: F Inpið Þ  formula (6);

Modal correction coefficient: @ðInpiÞ  
formula (7);
Fusion of Multi-modal Data:
InpAve ¼

Pn
i¼1 @ðInpiÞInpi；

IFin ¼ Dempster ðInpAve, n� 1Þ;

Int ¼ argmaxðIFinÞ,

IF Int > th : return Int；

Else: Reverse analysis:
RepInp ¼ argmini P Inpi j Intð Þ;

Active interaction; Return to step 1

Step3. Judgment of
Executability:

EInt  formula (1)；
IF EInt � the :

FinalInt ¼ Int, Return FinalInt:

Else: Reverse analysis; Active interaction;
Return to step 1

End.

The algorithm’s primary features are as follows: (1) the
effective fusion of data and intention extraction through the
utilization of a range of objective information implied by
multimodality, which enhances the evidence theory; (2) the
application of fuzzy mathematics knowledge to facilitate
interactive intention safety analysis; (3) elevated rates of
intention recognition and avoidance of hazardous intention
resulting from behaviors such as active interaction and
reverse analysis.

4. Experiment and analysis

To evaluate the proposed multimodal intention understand-
ing model’s effectiveness, this paper implements the system
into the Xarm robotic arm for interaction testing.

4.1. Experimental flow and design

The experimental hardware consisted of a Win10 laptop
with an i7-10850H CPU and an RTX2070S graphics card, a
six-axis Xarm robotic arm, Kinect2.0, Realsense, and a
Xiaomi wristband. The Xarm robotic arm was affixed to the
desktop, with the Kinect2.0 positioned 1.5 meters from the
user. Realsense was attached to the end-effector of the robot
arm, located 5 cm away from the human machine contact
surface. The software code was written in Python 3.7.

For this study, we recruited 45 participants, composed of
25 females and 20 males, by posting the recruitment infor-
mation with an age limit of 55 to 70 years old and without
any other additional requirements. It is important to note
two aspects of the volunteer-based experiment in this study:
(1) all participants signed an informed consent form before
the research was conducted and were aware of the nature
and purpose of the study, (2) all participants voluntarily par-
ticipated in the experiment and received no compensation.
Moreover, all participants completed the test efficiently fol-
lowing our guidelines and without experiencing any adverse
reactions.

Prior to conducting the experiment, we gathered and
evaluated data from all participants regarding the relation-
ship between the intensity and duration of massages and
their comfort levels, to establish a fuzzy inference rule base.
Participants were acquainted with the operation of the sys-
tem and the motion path of the robotic arm by watching
the experimental video recording. Following the completion
of all preparations, each participant was requested to interact
with the system ten times during the massage process.
Initially, the user naturally expressed their intention within
the range of the system’s vision, and the system summarized
the intention based on the input data and assessed its feasi-
bility. If the intention obtained does not meet the execution
standards, the system engages in a human-computer collab-
orative analysis for more detailed information or prompts
the user to re-express their intention. Throughout the
experiment, the system avoided voice prompts to prevent
interfering with the user’s interaction with the system. In
addition, to enhance the safety of the research system, an
emergency control button was incorporated. The experi-
menter holds the controller throughout the whole procedure
and can press the emergency control button in case of any
discomfort.

While conducting the experiment, we noticed that the
accuracy of intention extraction is significantly influenced
by the uncertainty of input information. Unclear expression
is anticipated during natural human-computer interaction,
particularly among older individuals. For a more detailed
evaluation of the effectiveness of the multimodal fusion
algorithm in identifying fuzzy data and reducing blurs, we
partitioned input information based on the degree of blurri-
ness and created a formula for reducing blurs. The steps of
fuzzy data classification include averaging the n sets of
intention probabilities in the Inp list to obtain an average
set of intention probabilities. We then utilized the entropy
value of the average set of intention probabilities to deter-
mine the degree of fuzziness for input data D:
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The paper categorizes multimodal intention sets based on
entropy values at probability boundaries of 0.9, 0.7, and 0.5.
Specifically, these entropy values are 0.7012, 1.5779, and
2.161, respectively. Data with D� 0.7012 is categorized as
clear data and is able to enter the intention extraction stage
directly. Data with D> 0.7012 is categorized as unclear inten-
tion sets, indicating that the user has provided an ambiguous
or unclear expression. If 0.7012<D< 1.5779, the unclear
data is categorized as a weak dispersal intention probability
set (W_D). If 1.5779<D< 2.161, it is recorded as a medium
dispersal intention probability set (M_D). If D> 2.161, it is
recorded as a strong dispersal intention probability set (S_D).
In addition, to showcase the benefits of the multimodal inten-
tion understanding algorithm, we perform a comparative
study by varying the input modality. Specifically, we consider
four input modes: (1) speech only (V-SM); (2) gesture only
(H-SM); (3) speech and gesture combined (DM); and (4)
multimodal intention understanding (MM). The first three
modes can be obtained by removing respective modal infor-
mation from the multimodal mode.

After tallying the expression of the six types of intentions
expressed by the volunteers, listed in Table 2, we assessed
the algorithm performance based on five metrics.

The advantages and recognition effects of the multimodal
fusion algorithm (before entering the human-computer collab-
orative analysis module) were evaluated by calculating the inten-
tion recognition rate (RR); RR ¼ R countc=T countc�100% for
different input modes, considering different levels of data ambi-
guity, where c represents various levels of ambiguity. Here,
R countc represents the number of times the system correctly
extracted intentions from the c-class input data, and T countc
represents the total number of times that the system extracted
the c-class input data, during the experiment. Thus, the inten-
tion recognition rate RR can most directly reflect the effective-
ness of the multimodal recognition algorithm.

1. Intention Recognition Rate (RR) before entering the
human-computer collaborative analysis module: RR ¼
R countc=T countc�100%: Here, c represents input data
with different degrees of dispersion. R countc represents
the number of times the system correctly extracted
intentions from the c-class input data, and T countc
represents the total number of times that the system
extracted the c-class input data, during the experiment.
Thus, RR can directly reflect the effectiveness of the
multimodal recognition algorithm.

2. Dispersion Reduction Capability (DR) before entering
the human-computer collaborative analysis module:

DR ¼
D� D IFinð Þ
D� 0:7012

�100%, D IFinð Þ � 0:7012

1, D IFinð Þ < 0:7012

8<
: (10)

Here, the variable D represents the degree of dispersion in the
probability set of multimodal intention. Meanwhile, D IFinð Þ

corresponds to the entropy value of the probability distribution
of the intention set after performing multimodal information
fusion. The effectiveness of the multimodal fusion algorithm can
be accurately and precisely reflected through the numerical
representation of BR.

3. Intention Correction/Enhancement Rate (CR): CR ¼
R countun=T countun�100%: Here, R countun indicates
the number of unmet intentions converted to standards
following a human-computer collaborative analysis, and
T countun represents the total number of unmet inten-
tion recognition cases during the experiment. CR is a
critical performance indicator that provides crucial infor-
mation regarding the safety collaborative strategy’s effi-
cacy, thereby enabling potential areas for improvement.

4. Hazardous Intention Avoidance Rate (AR):AR ¼
DF count=DT count�100%, where DF count represents
the total number of times the system recognized hazard-
ous intention during the experiment and DT count rep-
resents the total number of times hazardous intention
appeared during the experiment. The effectiveness of the
collaborative intention safety assurance method can be
reflected numerically through AR.

5. Subjective Evaluation by Users: We used the System
Usability Scale (SUS) (Vlachogianni & Tselios, 2022) to
evaluate the usability of the M-algorithm based massage
system in a way that was convenient for volunteers due
to its wide availability and lack of time constraints. In
order to obtain more data, we also had volunteers test
the home-based massage chair and rate its usability
using the same SUS questionnaire.

4.2. Experimental results and analysis

4.2.1. Intention recognition rate
During the course of the experiment, we observed 358
instances of dispersal probability distribution in the multi-
modal intention set caused by non-standard input behav-
ior. These instances had an average information entropy
higher than 0.7012 and were categorized as weak disper-
sion, moderate dispersion, or strong dispersion with 141,
132, and 85 instances respectively. The analysis of intention
recognition rates with varying input modes allowed us to
discern the correlation between input mode and the prob-
ability distribution of the input intention set. We also
ascertained the intention recognition rate (RR), illustrated
in Figure 2.

From the Figure 2, it is evident that the dispersion of
input data significantly affects the accuracy of intention rec-
ognition. As the data dispersion increases, the accuracy of
intention recognition decreases. However, when the data has
the same degree of dispersion, multimodal information can
effectively complement the shortcomings of unimodal infor-
mation and achieve a higher accuracy of intention
recognition.

Table 2. Table of Intention.

I1 I2 I3 I4 I5 I6
Increase Massage Intensity Reduce Massage Intensity Move up Move down move to left move to right
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4.2.2. Analysis of the blur reduction ability of multimodal
fusion algorithm
Further, to better detect the precise effects of our multi-
modal fusion algorithm on atypical inputs, we extracted 30
sets of data from each of the different dispersed multimodal
intention probability sets to form three test groups. By ana-
lyzing the changes in the dispersion degree of the intention
probability sets before and after multimodal fusion, we gen-
erated the results depicted in Figure 3.

As depicted in the figure, multi-modal data fusion effect-
ively reduces dispersion degree by an average of 0.6646,
0.5869, and 0.4947 for the weakly, moderately, and highly
dispersed test group data, respectively. These results indicate
that the multi-modal fusion algorithm presented in this
paper effectively reduces the dispersion degree of the prob-
ability of intention and promotes a concentrated distribu-
tion. The data above demonstrates that the multi-modal
fusion algorithm presented in this paper is capable of reduc-
ing the dispersion degree of multi-modal data, enhancing
the concentration distribution of the probability of intention,
and improving the recognition rate of intention.

4.2.3. Active interaction effect of human-computer collab-
oration and hazardous intention avoidance effect
In order to evaluate the impact of active analysis and inter-
action on the multimodal intention understanding algorithm,

we collected statistical data regarding collaborative behavior
between humans and machines in response to unfulfilled inten-
tions. Among the 358 instances of intention identification, 104
fell short of the fulfillment threshold (IFin Intð Þ < th), hence-
forth referred to as unfulfilled intentions and denoted as U-I.

Through Bayesian analysis and active interaction, the sys-
tem acquires more accurate information regarding inten-
tions. In this paper, we investigate the correlation between
the number of human-computer interactions and the fre-
quency of unmet intentions, as well as the correlation with
the intention correction/enhancement rate (CR). Figure 4
depicts these relationships, where the horizontal axis repre-
sents the number of reverse analyses, the primary vertical
axis represents the frequency of unmet intentions, and the
secondary vertical axis represents the intention correctio-
n/enhancement rate. The figure demonstrates that as the
number of reverse human-computer interactions increases,
the frequency of unmet intentions decreases, and the inten-
tion correction/enhancement rate increases proportionally.
The third human-computer interaction marks a notable
threshold, after which both the intention extraction and
intention correction/enhancement rates reach a high level.
Therefore, human-computer interaction contributes to the
naturalness of interaction, enables enhanced intention infor-
mation acquisition, and improves the rate of intention
recognition.

Figure 2. The plot of intention recognition accuracy versus input pattern and input dispersion.

Figure 3. Statistical graph of dispersion reduction capability of MIPIC algorithm
for various input data.

Figure 4. The correlation between active interaction and the rate of intention
enhancement. The horizontal axis denotes the number of active interactions,
while the primary-vertical axis represents the total number of unfulfilled inten-
tions, the secondary-vertical axis describes the intention correction/enhance-
ment rate.
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The collaborative safety strategy between humans and
machines, with a proactive reverse function, can not only
enhance the identification of intentions that violate safety
standards, but can also distinguish and prevent dangerous
intentions that compromise safety or cause discomfort. To
evaluate the effectiveness of this function, we recorded the
system’s ability to prevent and rectify dangerous intentions
during the experiment, as illustrated in Figure 5. Dangerous
intentions are defined as attempts to increase the intensity
level beyond the limits, or to change the massage position to
an unsafe area, which were voiced spontaneously by volun-
teers 97 times during the experiment, including 61 times of
adjusting the intensity level and 36 times of adjusting the
massage position. Based on the data in the figure, the rate
of successful prevention for dangerous intensity level adjust-
ments was 92%, while the rate for dangerous massage pos-
ition adjustments was 86%. As a result, the safety human-
computer collaborative strategy employed in this study pro-
vides an effective means of preventing hazardous intentions
to achieve a safe interaction.

4.2.3. User experience analysis
At the end of the experiment, we asked volunteers to com-
plete a SUS questionnaire with 10 questions, rating satisfac-
tion on a scale of 1–5 for the massage system implemented
in this paper and a home massage chair. See Table 3 for the
questionnaire contents. Questions 1–4 explored user’s use of
the system, questions 5–6 investigated user’s psychological
safety using the system, and questions 7–10 assessed user’s
cognitive load while using the system. Figure 6 summarizes
the questionnaire statistics.

The statistical results demonstrate that the human-com-
puter collaborative massage system described in this paper
provides a more positive experience for elderly users. This is
due to the system’s increased customization options, making
it more adaptable to user needs and therefore easier to use.
Additionally, the system’s natural interaction reduces the
user’s mental effort since it does not require memorization
of fixed expression patterns. However, the size of the robot
arm and its self-navigation feature may cause some users to
experience nervous pressure. It has been found that the
implementation of comfort-detection technology and
human-computer collaboration can gradually reduce this
pressure.

The experiments conducted in this study demonstrate
that the algorithm for multimodal intention recognition pro-
posed in this paper achieves good intention recognition
even with fuzzy input data (expressions), which solves the
problem of limited range of expressions and promotes nat-
ural human-machine interaction for elderly users.
Additionally, the module for intention feasibility assessment
added to the system enables effective identification and pre-
vention of unsafe intentions, ensuring the safety of users. In
conclusion, this study proposes a safe and natural inter-
action-based algorithm for multimodal intention recognition
that can be applied to home-based intelligent massage sys-
tems for the elderly population.

5. Discussion

In the context of human-computer interaction, natural
expression and the age of the target audience may lead to
inconsistent communication styles, making it challenging for
the system to recognize the user’s intentions. To promote
safe interaction, this study proposes a multi-modal fusion-
based intention recognition algorithm and a reverse-active
collaborative strategy based on comfort reasoning for intelli-
gent massage tasks. Experimental results demonstrate that
optimizing multi-modal data’s hidden objective information

Figure 5. Statistical chart of hazard intention avoidance.

Table 3. SUS questionnaire.

Question Description (low score ! high score)

Q1 Whether you are willing to use this massage system (unwilling !
willing)

Q2 Whether the function of this massage system is simple (difficult !
simple)

Q3 Whether you need to ask for help to complete the massage
(required ! not required)

Q4 Whether this massage system is worth promoting (no ! yes)
Q5 Whether you feel psychologically uncomfortable when using the

system (yes !no)
Q6 Whether you feel physically uncomfortable when using the system

(yes !no)
Q7 Confident or frustrated in the process of using it (frustrated !

confident)
Q8 Whether the interaction process of this massage system is simple

(difficult ! simple)
Q9 How do you feel about self-performance using this system (not

good ! good)
Q10 Does it require a lot of learning before using this massage system

(required ! not required)

Figure 6. Natural pointing massage positioning vs. 3D mannequin massage
positioning NASA survey results.
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by implementing data correction and fusion can decrease
input data’s dispersion and enhance the system’s intention
recognition rate. Moreover, the reverse-active interactive
strategy can naturally boost the intention recognition rate
and provide safety. As a result, the proposed MIUIC algo-
rithm highlights (1) the facility with which users can express
themselves without specific constraints, (2) how multi-modal
data’s potential objective information can achieve efficient
data fusion, and (3) how during the intention recognition
process, intention feasibility tests based on comfort reason-
ing enable robots to make decisions and steer clear of harm-
ful circumstances resulting from “blind obedience.”

The MIUIC algorithm has achieved high levels of multi-
modal intention recognition and dangerous intention avoid-
ance. However, the limited number of modalities used in
this study presented challenges in obtaining data from each
modality. Furthermore, the system recognized only a limited
range of intentions. For speech recognition, the algorithm
relied mainly on keyword-based speech recognition technol-
ogy, which has inherent limitations. To mitigate this, we rec-
ommend integrating phonetic characteristics and visual lip
shape information as supplementary information to increase
human-computer interaction and improve speech recogni-
tion rates. Further experimentation and improvement are
necessary to overcome these limitations (Bastanfard et al.,
2009).

Additionally, human safety is critical for tasks that
involve close contact between humans and machines. The
part localization and depth perception techniques used in
this paper rely mainly on skeletal point recognition techni-
ques, detecting hand gestures and depth cameras, which
may experience issues such as inaccurate recognition of skel-
etal points and depth detection. To augment these techni-
ques, we can incorporate more modal information, such as
speech emotion recognition (Keshtiari et al., 2015), expres-
sion recognition (Kollias, 2022), and sensors to analyze
human intentions.

Regarding future research directions, inspired by the lit-
erature (Hudec et al., 2021), this study will explore ways to
enable the affiliation function to possess generalization capa-
bilities based on the clarification of the fuzzy information
about the behavior. This is crucial for massage robots in
terms of human-computer interaction and is necessary to
ensure user safety. Additionally, this study will extend the
concept of human-computer collaboration to enhance the
machine’s intelligence and decision-making capabilities to
achieve more flexible massage functions to address massage
safety issues.

6. Conclusion

This paper describes the MIUIC algorithm, which combines
multi-modal data analysis and human-computer interaction
for a better understanding of user intention. It specifically
addresses the lack of safety measures in existing intelligent
massage systems. The MIUIC algorithm utilizes multi-modal
data to infer user intention, effectively reducing the disper-
sion of input data and improving recognition rate. To

ensure user safety, the algorithm employs reverse active
interaction strategy by detecting user comfort level and
effectively avoiding dangerous intentions. Experimental
results show that the MIUIC algorithm recognizes user
intention effectively, improves the collaborative relationship
between the user and the robot, and promotes the develop-
ment of home-style massage systems.
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